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Transport in heterogeneous media can be described by partial differential equations, which exhibit convo-
lutions with time and/or space memory kernels. In this work, we characterize the full time spectrum of
time-memory kernels by applying a nonparametric inversion algorithm to macroscopic synthetic data for
heterogeneous porous media, Our findings put into evidence the inherent nonuniqueness of the transport
parameters for nonlocal transport models. Notably, we find that the Péclet number can be interpreted as an
ancillary parameter of a family of probability distribution functions that characterizes the memory kernels of
transport.

DOI: 10.1103/PhysRevE.76.030102 PACS number�s�: 05.60.�k, 05.40.Fb

Transport of mass, momentum, and energy in multiscale
heterogeneous systems is characterized, at a small scale, by
the collective behavior of a large number of degrees of free-
dom that can be effectively described, at a mesoscopic scale,
by advection and diffusion models. Transport in complex
heterogeneous media differs from transport in homogeneous
media mainly for its distinctively long first arrival times tails.
An appropriate description of these long tails involves the
convolution of the transport operators for homogeneous me-
dia with an appropriate �space and/or time� memory kernel.
Transport in both aging �1–3� and nonaging �4� systems is
fully characterized by time-memory kernels �nonlocality in
time�.

First principle derivations and direct measurements of
time memory kernels remain open scientific challenges. For
this reason, time memory kernels are often defined by low-
dimensional parametrizations of simple analytical expres-
sions. Such an approach, however, does not have enough
flexibility to describe the distinctive features of more com-
plex physical situations �e.g., multimodal arrival times and
log-periodic fluctuations� and more flexible methods for ex-
tracting these kernels directly from macroscopic experimen-
tal observations are therefore needed.

The aim of this paper is twofold. First, we illustrate a
numerical method aimed at the nonparametric inversion of
the full time spectrum of the time-memory kernels. Second,
we discuss some consequences of the results of this inversion
method on the interpretation of the inverted parameters.

Many different formulations of transport in heterogeneous
media, including the classical advection dispersion equation
�ADE�, fractional derivative equations �FDE�, and multirate
mass transfer �MRMT�, can be shown to be special cases of
the continuous time random walk �CTRW� formulation �4�.
For this reason, and without loss of generality, in this work
we develop the nonlocal equations of transport in the CTRW
framework. In the CTRW framework, the master equation
�ME� �mass balance� for the quantity of interest, say the
concentration c�x ,��, reads

��c�x,�� = �
�

w�x� − x�c�x�,��dx�, �1�

where � is the �nondimensional� time, w�x� is a transition
rate, and x ,x� are �nondimensional� spatial positions on a
domain �. Equation �1� assumes a perfect knowledge of the
transition rates w�x�−x�, and can be shown to yield the clas-
sical ADE description of transport �5�. These transition rates
are, however, generally unknown �unresolved� in many
physical situations and can be characterized only in a sto-
chastic sense.

The key idea behind the CTRW approach is to map the
unresolved structure of the small scale spatial heterogeneities
onto a probability distribution function �PDF� of waiting
times, ��x ,��, which forms the core of the memory kernel.
For this reason, Eq. �1� is ensemble averaged over all pos-
sible realizations of the unresolved heterogeneity to obtain
the generalized master equation �6,7�

uc̃�x,u� − c0�x� = �
�

u
�̃�x� − x,u�

1 − �̃�u�
c̃�x�,u�dx�, �2�

where the tilde indicates the Laplace transform �LT� f̃�u�
�L�f������0

�f���exp�−u��d�, and u is the Laplace variable.

The quantity �̃�u���0
��̃�x ,u�dx is the conditional waiting

time PDF and is the crucial quantity that we want to estimate
from macroscopic experiments. Assuming that �i� the spatial

and temporal components of �̃ can be decoupled as

�̃�x ,u�= p�x��̃�u� and that �ii� p�x� �the PDF of the length of
the jumps� has finite moments up to the second order, it is
possible to define a local scale dispersivity �

� �
1

2

�
�

p�x�x2dx

�
�

p�x�xdx

, �3�

which can be interpreted as the reciprocal of the Péclet num-
ber Pe=�−1 when lengths are normalized with the first mo-
ment of p�x�.*acortis@lbl.gov
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A Taylor series expansion in x of the integrand on the
right-hand side �RHS� of Eq. �2� yields the CTRW partial
differential equation �PDE�

uc̃�x,u� − c0�x� = M̃�u�L̃�c�x,u�� , �4a�

L�c�x,��� = − �xc�x,�� + ��xxc�x,�� , �4b�

where c0�x� is the initial condition, L̃�¯� is the LT of the

classical local-in-space linear transport operator, and M̃�u�
�u�̃�u� / �1− �̃�u�� is a memory function that takes into ac-
count the nature of the heterogeneity. To solve Eq. �4� one
needs to specify the nature of the heterogeneity by defining
����. The role of ���� is to map the structure of the unre-
solved heterogeneities onto a distribution of waiting times.

Note that the special cases of �̃= �1+u�−1 and �̃= �1+u��−1

�with 0	�	1� correspond to the classical homogeneous

transport, i.e., M̃�u�=1 and to the fractional in time deriva-

tive PDE of order �, respectively �4�. M̃�u� may take various

functional forms with respect to �̃�u� for the case of colloidal
transport in porous media �8� and aging systems �3�.

Assuming Robin and Neumann boundary conditions
�BCs� at the inlet and the outlet, respectively, the 1D Green
function for Eq. �4� is

c̃�x,u� =
�
 − 1�e�x/2���1+
� + �
 + 1�e�x/2����2

x
−1�
+1�

��
 + 1�� + ��e�1/��
 + ��
 − 1�� − ��
, �5�

where 
=�1+4�� and �= �1− �̃� / �̃. The concentration
c�x ,���L−1�c̃�x ,u�� can be obtained by solving the Fourier-
Mellin integral line integral c�x ,��=��−i�

�+i�c̃�x ,u�exp�u��du.
No analytical solution of L−1 for Eq. �5� is currently known,
hence the original is evaluated numerically �9�. In this work,
we use the inversion algorithm of de Hoog et al. �10�, which
makes use of complex-valued Laplace parameters u.

Direct observation of the ���� at the microscopic scale
represents a formidable experimental challenge; moreover
only a few first principles theoretical derivations exist
�11–13�. In the context of transport in geological media,
simple analytical models for ���� have been postulated based
on asymptotic transport considerations �4,14�. In addition to
the well studied power-law-like forms �15�, another example
of such a PDF is �12�

���� = 3F3	1,1,1

2,2,2
; − � 
e−�4F4	1,1,1,1

2,2,2,2
; −� 
 , �6�

where �0 and pFq is the generalized hypergeometric func-
tion

pFq	a1, . . . ,ap

b1, . . . ,bq

; x 
 = �
k=0

� �
i=1

p

��ai + k�/��ai�

�
j=1

q

��bj + k�/��bj�

xk

k!
. �7�

Regardless of the specific form of L�x ,�� in Eq. �4�, the
identification of the system parameters is obtained via a best

fit procedure on the transport parameters of L �e.g., �� aug-
mented with the parameters of the ���� �e.g., �. Such a
parametric inversion can be easily implemented by means of
a least-squares optimization on the experimental data �16�. If
the solution of Eq. �4� does not fit the data adequately, a
different functional form for ���� is postulated until a satis-
factory fit is obtained. This is a very fortunate situation that
is, however, not representative of the full spectrum of experi-
mental data observed in many physical applications. Systems
that exhibit a discrete spectrum of characteristic times, for
instance, do not obey simple parametrizations of ����, and
more general representations are needed. General expres-
sions for ����, such as the one that represents the equiva-
lence between CTRW and the MRMT �17–19�

�̃�u� � 1 + u + u�
i

N
�i

�t�

u + �i
�r��−1

�8�

become impractical as the number of parameters �the rates
��r� and ��t� in Eq. �8�� grows as 2N, with N �the number of
immobile phases� generally unknown. It is thus evident the
need for a nonparametric inversion algorithm �NPIA� for ex-
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FIG. 1. Numerical solution of Eq. �5� for ����=exp�−�� and
�=0.05 �top: circles�. The BTC at x=0.25 is taken as a baseline for
the inversion and the inverted ��� ��=0.05� �bottom: circles� is
compared to the original ���� �bottom: solid line�. The predicted
BTCs at x=0.5, 0.75, and 1.0 are calculated �top: solid line� and
compared to the original numerical solution �top: circles�. A
perturbation to the value of � is applied and the corresponding
��� �2�� and ��� � 1

2�� are calculated �bottom: dashed lines�. The
BTCs corresponding to these two perturbed ���� are calculated
�top: dashed lines� and compared to the original analytical
solutions.
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tracting the time-memory kernel M̃�u� directly from experi-
mental observations.

The aim of the NPIA is thus to find a numerical approxi-

mation for �̃�u�, by repeatedly minimizing the distance of
the analytical solution �5� to the numerical LT of the experi-
mental concentration ce�t� at each of the Laplace variables
uj. We assume an experimental breakthrough curve �BTC�,
ce��� sampled at M times, � j � ��min,�max� at the section x.

The L̂−1 operator is defined by a complex valued sequence ui
with i=1, . . . ,N, such that c�� j��L−1�c̃�ui�� �where we
dropped the x dependence�. We then evaluate a numerical
approximation of L�ce���� by truncating the LT to the experi-
mental time interval

�
0

�

ce���e−ui�d� � �
�min

�max

ce���e−ui�d� , �9�

and calculating the integral on the right-hand side of Eq. �9�
by means of a Clenshaw-Curtis quadrature algorithm.

It is important to stress that no a priori information on the
value of � is generally available for a given transport experi-
ment. We thus assume in Eq. �5� a value of � proportional to
the nondimensional pore-scale characteristic length. We can

now search for the value of �̃ j�� introduced in Eq. �5� that
minimizes the norm �= ��c̃e�uj�− c̃�uj� � �, conditional to the
value of �. This is done by a two-variables minimization of

the real and imaginary parts of �̃�uj�. A global minimum
solution is enforced through a differential evolution search

�20� followed by a Nelder-Mead unconstrained nonlinear
minimization �e.g., �	10−8�. The minimization procedure is
repeated for all the values of ui to obtain an approximation of

�̃�u� that is used in Eq. �5� to evaluate c�� j� �9�. This numeri-
cal solution is then compared to the data ce�� j�. Finally, the

waiting time distribution is inverted to obtain �̄���, the nu-
merical approximation of ���� in the ��min,�max� time inter-
val.

To validate the inversion procedure, we consider three
synthetic examples. The first example is the simple case of a
PDF with an exponential decay ����=exp�−��, which corre-
sponds to the classical transport in homogeneous media, i.e.,

M̃�u�=1. From Eq. �4�, we calculated the BTCs at four spa-
tial locations, x=0.25,0.5,0.75,1, for a value of �=0.05.
These four BTCs are shown as circles in 1 �top�, and will be
hereafter referred to as data. To initialize the NPIA, we select
one of the four BTCs, in this case the BTC at x=0.25 and,
keeping the value of �=0.05 unchanged, we apply the NPIA
described above to obtain the numerical approximation of

the waiting time PDF �̄�� ���, conditional on the chosen
value of �. Both the original ��t�=exp�−�� and its numerical

approximation �̄�� ��� are plotted in Fig. 1 �bottom� as a

solid line and circles, respectively. The �̄�� ���is then used to
evaluate the BTC at sections x=0.5,0.75,1. These BTCs are
plotted in Fig. 1 �top� as solid lines and show excellent
agreement with the data. From these results, we can conclude
that the numerical approximation of ���� in the interval defi-
nition for the BTC does provide enough information to re-
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FIG. 2. Same as in Fig. 1, but with ���� described by Eq. �6�
and a value of the disorder parameter =0.3. The exponential decay
exp�−�� is plotted for reference.
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FIG. 3. Same as in Fig. 1, but with ����=�k=1
3 ak exp�−bk��,

ak= �10,5 ,0.1�, and bk= �1,0.1,0.01�. The exponential decay
exp�−�� is plotted for reference.
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produce the whole behavior of the system. This result is,
however, not very surprising as we set � to the value used in
the data generation. In the more general case of experimental
BTCs, though, we do not have access to this information and
we need to assume a reasonable value for the dispersivity �.

To check the sensitivity of the NPIA to variations of the
value of �, we repeated the procedure perturbing � by the
factors 0.5 and 2, respectively. The resulting BTCs are
shown in Fig. 1 �dashed lines� and are indistinguishable from
the data �solid lines� at x=0.25,0.5,0.75. Some minor devia-
tions can be observed for x=1, attributable to numerical ap-
proximations. The shapes of the corresponding waiting time
pdfs, as expected, exhibit significative deviations from the
originally imposed exponential decay ����=exp�−�� �see
Fig. 1 bottom, dashed lines�. These findings imply the exis-
tence of an overlap between the local in space dispersivity �,
and the nonlocal in time waiting time PDF ��� ��� descrip-
tions of the BTC apparent dispersion. This overlap entails an
inherent nonuniqueness of the inverted transport parameters,
coherently with nonlocal descriptions of transport such as the
CTRW.

The second example involves data generated by means of
the long tailed waiting time PDF in Eq. �6� for a value of
=0.3. Figure 2 �bottom� shows this ���� as circles �the
exponential decay is reported for reference as a dashed line�.
The results for this test case are qualitatively analogous to
the ones obtained in the first example.

The third example �see Fig. 3�, involves a waiting time
distribution of the form ��t�=�k=1

3 ak exp�−bk��, with ak

= �10,5 ,0.1� and bk= �1,0.1,0.01�. Also in this case, we ob-

tain an excellent match between the inverted results and the
data.

In all the three test cases reported above, the baseline
BTC was taken at x=0.25, and the other BTCs at x
=0.5,0.75, and 1 were predicted. The agreement between the
predicted BTCs and the data, however, is conserved upon a
change in the baseline section, indicating that each of the
four BTCs contains the necessary information to describe the
whole spatiotemporal behavior of the heterogeneous system.
The NPIA thus returns a one-parameter family of equivalent

PDFs, �̄�� ���, which model equally well the transport data.
This nonuniqueness can be understood by recalling that, in
nonlocal in time frameworks, the only requirement on p�x�,
is one of finite first and second moments. The actual value of
these two moments, however, is not specified so that their
ratio � �hence the Péclet number� in Eq. �3� becomes an
ancillary parameter of a more general characterization of

transport, the waiting time PDF �̄�� ���. Our NPIA can also
be used to infer transport characteristics from spatial profiles
and can be adapted to any nonlocal description of transport.
The proposed NPIA inversion and the associated physical
interpretation should prove useful in the characterization, un-
derstanding, and prediction of the rich complexity of trans-
port phenomena in multiscale heterogeneous media.
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